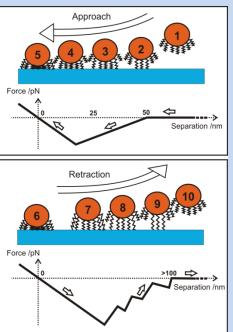
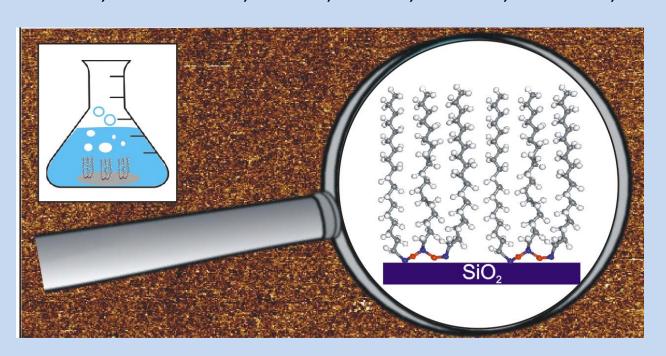

On the poster: Nearby the abstract/motivation put in


- a "Table of Contents-Graphic" and
- a bulleted list of 3-5 sentences, maximum ~90 characters per bullet point) that describe the main results of the poster

Poster layout not to scale, just look at TOC graphic and bulleted list!

Hydrophobic interaction governs unspecific adhesion of staphylococci: a single cell force spectroscopy study

N. Thewes, P. Loskill, P. Jung, H. Peisker, M. Bischoff, M. Herrmann & K. Jacobs



- Bacterial adhesion is characterized by AFM force spectroscopy with bacterial probes.
- Upon approach, adhesion forces can be recorded at 50 nm bacterium/substrate distance.
- ➤ Large (R_G~ 50 nm) bacterial cell wall proteins gain contact to surface via hydrophobic interaction.
- > Adhesion force much larger on hydrophobic than on hydrophilic surfaces.
- Force/distance curves of bacterium is characteristic and highly reproducible, even after change of surface.

Poster layout not to scale, just look at TOC graphic and bulleted list!

Self-assembled silane monolayers: An efficient step-by-step recipe for high-quality, low energy surfaces

M. Lessel, O. Bäumchen, M. Klos, H. Hähl, R. Fetzer, M. Paulus, R. Seemann & K. Jacobs

- A recipe for ultra-smooth, alkyl-terminated silane SAMs on Si wafers was developed.
- The recipe can be followed also by non-experts, gaining reliably excellent coatings.
- ➤ High water contact angles (> 110°) with low hysteresis (<5°) were achieved.</p>
- Atomic force microscopy and X-ray reflectometry reveal achievable standard quality.
- > The developed recipe is compared to other published silane-SAM recipes.