Tue, 23/01/2018 - 14:15
,
Campus SB, E2 6, Room E04

Prof. Dr. Holger Kress
(
Host: Dr. Jean-Baptiste Fleury
)
Biological Physics Group, University of Bayreuth

Size-dependent organelle transport during phagocytosis

Phagocytosis of bacteria and other pathogens by macrophages is a key process of the mammalian immune system. The intracellular maturation of phagosomes, which often leads to the degradation of the internalized pathogens, shows high organelle-to-organelle variations that are not clearly understood. An important part of the maturation is the phagosomal transport from the cell periphery towards the perinuclear region. We hypothesize that the phagosome size influences the phagosomal transport and therefore also potentially the maturation process. We tested this hypothesis by tracking phagosomes with different diameters between 1 μm and 3 μm inside macrophages. We show that the transport efficiency increases with increasing phagosome size although the instantaneous velocities of the investigated phagosomes are very similar to each other. In addition, we found that the share of bi-directional motion as well as the transport from the nucleus back to the periphery decreases with increasing phagosome size. We show that dynein is significantly involved in the phagosomal transport, in particular in the persistent centripetal transport of large phagosomes. In addition, actin-dependent motion is also contributing to the transport, in particular to the transport of small phagosomes. Furthermore we investigated the spatial distribution of dyneins and microtubules, and found that density differences between the nucleus-facing side of phagosomes and the opposite side can explain part of the observed transport characteristics. Our findings suggest that a basic size-dependent cellular sorting mechanism might exist that supports inward transport of large phagocytosed pathogens for facilitating their digestion and that simultaneously supports outward transport of small pathogen fragments for example for antigen presentation.

Upcoming Events

  • SFB 1027 Seminar

    Tue, 30/04/2024 - 14:00
    ,
    Campus SB, Building E2 6, Room E04

    Prof. Dr. Abdou Rachid Thiam

    Crafting the lipid droplet proteome

  • SFB 1027 Seminar

    Tue, 14/05/2024 - 14:00
    ,
    Campus SB, E2 6, E04

    Dr. Michael Lienemann

    Enzymatic and microbial electrosynthesis for the conversion of carbon dioxide into food supplements and commodity chemicals

  • SFB 1027 Seminar

    Tue, 28/05/2024 - 14:00
    ,
    Campus SB, Building E2 6, Room E04

    Prof. Dr. Sabine Klapp

    t.b.a.

  • IRTG Intro Lecture

    Wed, 29/05/2024 - 14:00
    ,
    Campus SB, Building E2 9, Room 0.07

    Prof. Dr. Karin Jabobs

    t.b.a.

  • SFB 1027 Seminar

    Tue, 04/06/2024 - 14:00
    ,
    Campus SB, E2 6, E04

    Prof. Dr. Stefan Klumpp

    t.b.a.

  • IRTG Intro Lecture

    Tue, 11/06/2024 - 14:00
    ,
    Campus SB, Building E2 6, Room E.04

    Prof. Dr. Jochen Hub

    Everything You Always Wanted to Know About Molecular Dynamics Simulations* 

    (*But Were Afraid to Ask)

  • SFB 1027 summer camp

    Wed, 26/06/2024 - 09:00 to Fri, 28/06/2024 - 16:00
    ,
    BURG EBERNBURG 55583 Bad Kreuznach Bad Münster am Stein Ebernburg

  • SFB 1027 Seminar

    Tue, 02/07/2024 - 14:00
    ,
    Campus SB, Building E2 6, Room E04

    Prof. Dr. Thomas Holstein

    t.b.a.

  • SFB 1027 Seminar

    Tue, 16/07/2024 - 14:00
    ,
    Campus SB, Building E2 6, Room E04

    Prof. Dr. Jona Kayser

    t.b.a.

  • SFB 1027 Seminar

    Tue, 23/07/2024 - 14:00
    ,
    Campus SB, E2 6, E04

    Prof. Dr. Doris Heinrich

    t.b.a.

 

 

 

 

 

 

 

 

 

 

 

 

  Legal notice Privacy policy