Tue, 12/03/2019 - 14:15
,
Campus SB, Building E2 6, Room E04

Dr Sara Jabbari Farouji
(
Host: Dr. Reza Shaebani
)
Institute of Physics, University of Mainz

Controlling stability and transport of magnetic microswimmers by an external field

Inspired by intriguing dynamics of magnetotactic bacteria, we present a minimal kinetic model for magnetic swimmers in an external magnetic field to investigate their collective behavior. Our kinetic model couples a Fokker-Planck equation for active particles in an external magnetic field to the Stokes flow. Combining linear stability analysis and nonlinear 3D continuum simulations, we investigate the hydrodynamic stability and transport of magnetic swimmers as a function of activity and magnetic field strengths. We show that at sufficiently high activity and moderate magnetic field strengths, a homogeneous polar steady state is unstable and distinct types of splay and bend instabilities for puller and pusher swimmers emerge. Pushers form wave-like structures perpendicular to the field while pullers form wave-like lanes along the field. These instabilities arise from the amplification of anisotropic hydrodynamic interactions in the external alignment and lead to a partial depolarization and a reduction of the average transport speed of the swimmers in the field direction. Interestingly, at higher field strengths the homogeneous polar state becomes stable and a transport efficiency identical to that of active particles without hydrodynamic interactions is restored. We discuss our results in relation to the experimental findings.

Upcoming Events

  • SFB 1027 Seminar

    Tue, 23/04/2024 - 14:00
    ,
    Campus SB, Building E2 6, Room E04

    Prof. Dr. Carsten Beta

    Biohybrid micro-transport — how motile cells move passive micro-cargo

  • SFB 1027 Seminar

    Tue, 30/04/2024 - 14:00
    ,
    Campus SB, Building E2 6, Room E04

    Prof. Dr. Abdou Rachid Thiam

    Crafting the lipid droplet proteome

  • SFB 1027 Seminar

    Tue, 14/05/2024 - 14:00
    ,
    Campus SB, E2 6, E04

    Dr. Michael Lienemann

    Enzymatic and microbial electrosynthesis for the conversion of carbon dioxide into food supplements and commodity chemicals

  • SFB 1027 Seminar

    Tue, 28/05/2024 - 14:00
    ,
    Campus SB, Building E2 6, Room E04

    Prof. Dr. Sabine Klapp

    t.b.a.

  • IRTG Intro Lecture

    Wed, 29/05/2024 - 14:00
    ,
    Campus SB, Building E2 9, Room 0.07

    Prof. Dr. Karin Jabobs

    t.b.a.

  • SFB 1027 Seminar

    Tue, 04/06/2024 - 14:00
    ,
    Campus SB, E2 6, E04

    Prof. Dr. Stefan Klumpp

    t.b.a.

  • IRTG Intro Lecture

    Tue, 11/06/2024 - 14:00
    ,
    Campus SB, Building E2 6, Room E.04

    Prof. Dr. Jochen Hub

    Everything You Always Wanted to Know About Molecular Dynamics Simulations* 

    (*But Were Afraid to Ask)

  • SFB 1027 summer camp

    Wed, 26/06/2024 - 09:00 to Fri, 28/06/2024 - 16:00
    ,
    BURG EBERNBURG 55583 Bad Kreuznach Bad Münster am Stein Ebernburg

  • SFB 1027 Seminar

    Tue, 16/07/2024 - 14:00
    ,
    Campus SB, Building E2 6, Room E04

    Prof. Dr. Jona Kayser

    t.b.a.

  • SFB 1027 Seminar

    Tue, 23/07/2024 - 14:00
    ,
    Campus SB, E2 6, E04

    Prof. Dr. Doris Heinrich

    t.b.a.

 

 

 

 

 

 

 

 

 

 

 

 

  Legal notice Privacy policy