Wed, 18/05/2022 - 16:30
,
Campus Homburg Building 48, CIPMM Auditorium

Prof. Dr. Andrew Holle
(
Host: Dr. Bin Qu
)
Mechanobiology Institute, National University of Singapore

Physiological Confinement Induces Stem Cell Differentiation

Self-induced cellular confinement has been shown to play a role in a wide variety of biological processes, including cancer invasion and metastasis, immune cell navigation, and mechanosensitive gene expression and localization. However, the ability of adult stem cells to enter tight confinements has been less studied, despite the fact that stem cells are capable of finely tuned mechanotransduction, must migrate from their home niche to their regenerative niche, and have been shown to integrate past stimuli in a form of 'mechanical memory'. Here, we characterize the interstitial spaces in cleared tissue, providing a physiological basis for the design of biomimetic microchannel devices. Next, we show that adipose-derived stem cells (ASCs) and bone marrow stem cells (hMSCs) are capable of entering and permeating PDMS-based microchannels as narrow as 3 μm. Patterns of microchannel permeation as a function of width are similar to those found in cancer cells, despite the fact that these stem cells are more well-spread and exhibit higher cell diameters. Both narrow and wide confinements were shown to induce an upregulation of the osteogenic differentiation marker CBFA1. Interestingly, narrow confinements led to enhanced CBFA1 nuclear localization compared to wide channels, suggesting that the level of confinement imposed upon a stem cell via its extracellular environment ultimately plays a role in differentiation. Future work will ultimately discern if the migratory journey a stem cell undergoes during development and regeneration, and the confinement it experiences along the way, drive tissue-specific stem cell differentiation.

The Teams Link is: https://teams.microsoft.com/l/meetup-join/19%3ameeting_MDU2Y2I4NjgtZDcwMC00OTdjLTgyYzktZTI1NWRmYjE3YTAw%40thread.v2/0?context=%7b%22Tid%22%3a%2267610027-1ac3-49b6-8641-ccd83ce1b01f%22%2c%22Oid%22%3a%2228850052-8625-4df1-9753-94fb1b9f0573%22%7d

Upcoming Events

  • SFB 1027 Seminar

    Tue, 23/04/2024 - 14:00
    ,
    Campus SB, Building E2 6, Room E04

    Prof. Dr. Carsten Beta

    Biohybrid micro-transport — how motile cells move passive micro-cargo

  • SFB 1027 Seminar

    Tue, 30/04/2024 - 14:00
    ,
    Campus SB, Building E2 6, Room E04

    Prof. Dr. Abdou Rachid Thiam

    Crafting the lipid droplet proteome

  • SFB 1027 Seminar

    Tue, 14/05/2024 - 14:00
    ,
    Campus SB, E2 6, E04

    Dr. Michael Lienemann

    Enzymatic and microbial electrosynthesis for the conversion of carbon dioxide into food supplements and commodity chemicals

  • SFB 1027 Seminar

    Tue, 28/05/2024 - 14:00
    ,
    Campus SB, Building E2 6, Room E04

    Prof. Dr. Sabine Klapp

    t.b.a.

  • IRTG Intro Lecture

    Wed, 29/05/2024 - 14:00
    ,
    Campus SB, Building E2 9, Room 0.07

    Prof. Dr. Karin Jabobs

    t.b.a.

  • SFB 1027 Seminar

    Tue, 04/06/2024 - 14:00
    ,
    Campus SB, E2 6, E04

    Prof. Dr. Stefan Klumpp

    t.b.a.

  • IRTG Intro Lecture

    Tue, 11/06/2024 - 14:00
    ,
    Campus SB, Building E2 6, Room E.04

    Prof. Dr. Jochen Hub

    Everything You Always Wanted to Know About Molecular Dynamics Simulations* 

    (*But Were Afraid to Ask)

  • SFB 1027 summer camp

    Wed, 26/06/2024 - 09:00 to Fri, 28/06/2024 - 16:00
    ,
    BURG EBERNBURG 55583 Bad Kreuznach Bad Münster am Stein Ebernburg

  • SFB 1027 Seminar

    Tue, 16/07/2024 - 14:00
    ,
    Campus SB, Building E2 6, Room E04

    Prof. Dr. Jona Kayser

    t.b.a.

  • SFB 1027 Seminar

    Tue, 23/07/2024 - 14:00
    ,
    Campus SB, E2 6, E04

    Prof. Dr. Doris Heinrich

    t.b.a.

 

 

 

 

 

 

 

 

 

 

 

 

  Legal notice Privacy policy